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Abstract 

This is the second of two papers devoted to the study of baryogencsis at the 

end of extended inflation. Extended inflation is brought to an end by the 

collisions of bubble walls surrounding region6 of true vacuum, a process 

which produces particle6 weIl out of thermal equilibrium. In the first 

paper we considered baryogenesis via direct production and subsequent 

decay of baryon-number violating bosons. In this paper we consider the 

further possibility that the wall collisions may provide a significant density 

of primordial black holes aud usmine their possible role in generating a 

baryom asymmetry. 
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I. INTRODUCTION 

This is the second of two papers (we shall refer to the first’ as I. throughout) in which 

we examine whether the out of equilibrium conditions automatically generated at the 

end of extended inflation provide suitable conditions for baryon number violations to 

occur. Extended inflations is a recent revival of the spirlt of Guth’s original infla- 

tionary cosmology3 where the Universe is trapped in a false vacuum state. In Guth’s 

picture this induces exponential growth in the scale factor and solves various cosmo- 

logical problems. Inflation ends via the quantum-mechanical formation of bubbles of 

the true vacuum by tunnelling; such bubbles form with a characteristic size deter- 

mined by microphysics’ (provided gravitational corrections are small). The bubbles 

then grow until they collide with adjacent bubbles, and this disperses the coherent 

energy in the bubble walls. With exponential inflation, this scenario is flawed because 

the exponential expansion of the false vacuum region generically dominates over bub- 

ble formation and so inflation never ends .s Extended inflation solves this difficulty by 

invoking modified gravitational theories in which the gravitational constant may vary; 

in such theories the inflationary expansion is a rapid power-law rather than exponen- 

tial, and this ensures that the bubble nucleation rate always eventually overcomes 

the expansion snd brings the inflationary era to a satisfactory end. The difficulties 

of old inflation can also be circumvented in this way in any power-law or slower than 

exponential infiationary model which is driven by a suitable phase transitions 

However, the extended inflation scenario has ditficulties of its own. It was quickly 

realised by Weinberg’ and by La, Steinhardt, and Bertschinger,* that the original(and 

probably simplest) extended inflation model based on a Jordan-Brans-Dicke theory 

fails because bubbles nucleated early in inflation have time to grow to large sizes. 

The true vacuum within these large bubbles does not have time to thermalize before 



radiation decoupling and would create excessively large distortions in the microwave 

background. In order to avoid this conflict other models have been suggested,g~‘0JrJ2 

with the common theme of arranging that the production of bubbles early in inflation 

is suppressed. Bubbles formed sufficiently late in the inflationary era do not have time 

to grow to unacceptable sizes before wall collisions bring inflation to an end. This 

seems to be an essential feature for any successful extended inflation model, and in 

this and the preceding paper’ we have invariably assumed that this requirement is 

met, although we will not require recourse to a specific model. 

In I. we outlined the observational status of the baryon asymmetry, and we ask 

the reader to refer to it for details. In order to explain why the present state of 

the Universe consists essentially entirely of baryons rather than antibaryons, it is 

postulated that in the very early Universe a small excess of baryons over antibaryons 

was created, with the subsequent annihilations leaving the baryons we see today as a 

residue. This asymmetry is best denoted by a quantity B, called the baryon number 

of the IJttniuerse, which is defined as the ratio of the baryon number density to the 

entropy density s. This quantity is constant in the late evolution of the Universe, 

and is constrained by primordial nucleosynthesis’s to be in the range B = (3 to 

7) x lo- . rr Since inflation generates a large thermal entropy it is necessary that the 

baryon asymmetry be formed after inflation is over. 

As discussed in I., there are two standard scenarios for baryogenesis.” In I. we 

considered the decays of massive particles (taken to be Higgs bosons) whose decays 

violate baryon number. These massive bosons were created by the collisions between 

bubble walls at temperatures low enough, to ensure that ‘no thermal production of’ -.* 

Higgs particles occurred, giving a picture different to the conventional one where 

Higgs leave an original state of thermal equilibrium and then decay. The net baryon 

asymmetry produced per Higgs decay is parametrized by a fraction e which is in prin- 
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ciple derivable from the degree of CP vioiation in the theory considered; ultimately 

the value of B can be determined. This paper considers the second scenario, which 

involves the violation of baryon number conservation in black hole decays. 

One of the implications of the “no-hair” theorems of black hole physics is that 

black holes have an indeterminant baryon number: baryon number is not conserved 

in black hole evaporation. In 1975 Hawking suggested that evaporating primordial 

black holes (PBHs) might radiate an excess of baryons over antibaryons.‘s This idea 

was taken up again in the context of GUTS by many people.‘ss” The violence of 

bubble wall collisions may well produce a significant number of black holes as well as 

relativistic particles, because of the gravitational instability of overdensities generated 

by the collisions. When such black holes decay by the emission of Iiawking radiation, 

they may emit baryon number violating Higgs particles whose decays generate the 

baryon asymmetry. 

The mechanism of baryogenesis by evaporation of primordial black holes divides 

into two sub-categories. *O In the first version, evaporation occurs while radiation 

dominates the energy density of the Universe, with the black holes providing the 

baryon asymmetry but with the entropy arising from the background radiation. Since 

radiation energy density falls off faster than that of matter, the contribution of the 

black hole energy density becomes more important as time goes by. If the time until 

radiation domination is less than the black hole lifetime, we get a second version of 

the mechanism where the black hole density dominates at the time of evaporation; 

in such models the black holes provide both entropy and baryon number. This latter 

class also covers the possibility that so many black holes may be formed that they 

dominate the energy density of the Universe immediately. 

In the next section we shall briefiy outline some important parameters relating 

to extended inflation. For more details concerning these the reader should consult I. 
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We then go on to estimate the baryon asymmetry generated for the different versions 

of this black hole inspired mechanism. The final section demonstrates some typical 

numbers and compares the results with those obtained via the direct production 

mechanism. 

II. EXTENDED INFLATION PARAMETERS 

The details of the end of extended inflation depend primarily on various parameters of 

the in5aton potential. These determine the duration of inflation, but more important 

for our purposes they determine the details of the bubble nucleation including the 

typical bubble size and the energy density of the bubble walls. Without specifying 

a particular inflationary model, we can identify the important parameters as follows 

(we use units ke = h = c = 1, mpl = G-r/’ = 1.2 x 10’sGeV throughout). 

1. oe, the energy scale for SSB, i.e., the VEV of the scalar field. 

2. A, a dimensionless coupling constant of the in5aton potential. We will assume 

that the potential is proportional to A. 

3. t, a dimensionless number that measures the difference between the false and 

the true vacuum energy density via pv = [Xu~; t must be less than unity for 

sufficient in5ation to occur and this is also precisely the condition that allows 

the thin wall approximation (discussed below) to be made. 

In terms of these variables, the size of nucleated bubbles (in the thin wall approx- 

imation) is 

Rc - ((A”%~)-‘, (2.1) 



the bubble wall thickness is 

a - (X”*c%)-‘, (2.2) 

and the energy per unit area of the wall is 

7 - A”‘U,3. (2.3) 

As shown in I., a typical bubble experiences little growth between nucleation and 

percolation, and hence we can assume that at percolation the size of a typical bubble 

remains Rc. 

In I., we calculated the baryon asymmetry produced via the production and decay 

of baryon number violating bosons. Using the information about the bubbles given 

above, we obtained the result that (ignoring Wing-factors which are of order one and 

appear to the quarter power) 

B,, = cfag;‘~‘X-‘~‘~‘~‘, (2.4) 

where 9. is the effective number of degrees of freedom in all species of particles formed 

during thermalization (g. would be expected to be of order 100 in a grand unified 

theory) and fH is the fraction of baryon number violating Higgs particles formed in 

the wall collisions. If the typical energy of particles formed in the collisions exceeds 

the Higgs mass then fa - gn/g. where gn is the number of Higgs degrees of freedom. 

This result is useful for comparison with those we shall derive in the next section for 

the case where a significant density of black holes are produced in the wall collisions. 

Note that we shall use different subscripts on B to distinguish the baryon asymmetry 

obtained in different situations. 
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III. BARYOGENESIS BY BLACK HOLE EVAPORATION 

We consider the possibility that the formation of primordial black holes may have led 

to significant baryogenesis. There are two possible sources for the formation of small 

primordial black holes. Firstly, holes may form via the gravitational instability of 

inhomogeneities formed during the thermalization phase, particularly during the wall 

collisions themselves where we can expect high local densities to prevail, and secondly 

there is the possibility of trapped regions of false vacuum (within their Schwarzschild 

radii) caught between bubbles of true vacuum. rs In the context of our model, this 

latter possibility seems unlikely for the following reason. As we know the false vacuum 

energy density, we can calculate the radius +s which a region would require in order 

to be within its Schwarzschild radius. As a ratio to the critical bubble size, this 

radius is rs/Rc = ~‘&np~/oa, which is much greater than one (perhaps 100 for the 

typical model parameters we shall consider later). In our picture bubbles have little 

time to grow before the rapid nucleation burst brings infiation to an end; clearly it 

is extremely unlikely for these bubbles to nucleate so as to surround a false vacuum 

region large enough to form a black hole. 

Unfortunately, the technical details of even estimating the typical number density 

and mass of the black holes formed by these processes are quite difficult. Some 

progress in this direction was made by Hawking, et al.,” in the context of the original 

infiationary scenario, and more recently Hsu r9 has examined black hole production 

from false vacuum regions in extended in5ation. In order to keep our discussion on 

a more general footing, we shall for now simply assume that some fraction p of the 

energy after collisions is in black holes, while the remaining 1 - @ is in radiation,rs 

and later consider the various outcomes implied by the differing values of ,8. 

The stage will be set for baryogenesis at the end of extended inflation. At the end 
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of extended inflation, the expansion rate of the Universe is HEND, and from HEND we 

can define a characteristic timescale at reheating, which formally represents a patching 

of a radiation or matter-dominated FRW cosmology onto the in5ationary one. For 

a radiation-dominated universe this is tRH E H&/2, while for matter domination 

we have tRH z 2HEiD/3; we will refer to tRH as the time at the end of in5ation. 

We shall derive equations below for the case of patching to a radiation-dominated 

universe, pointing out any differences that matter domination implies. 

The total energy density at the end of extended inflation is partitioned between 

the energy density of radiation, in, and black holes, ~=a: 

P(tRX) = PR(tRH)+ PBdtRH) 

PR(hH) = (1 -P)P(htl) = $&z 

PBH(hI) = h’(ti?H)= %nBH(tRR), (3.1) 

where TRY is the reheat temperature, Ms is the initial mass of the black holes formed 

(for convenience we will assume that they all have the same mass), and nga is the 

number density of black holes. The time tm can also be expressed in terms of P(tnH): 

t2 3 ( > & 
RH= 32a &q’ (3.2) 

(For matter domination, the factor 3/32x is replaced by 1/6x.) From HEND and p we 

also define a “horizon mass” at the end of in5ation: 

&OR = $&If)(2tRR)3 = (&)“‘,,;f;,. (3.3) 

(The right hand side is the same in the matter dominated case.) Muou represents 

the mass within the “physics horizon,” at the end of irAtion, and plays the same 

role as the mass within the horizon in the standard FRW model. 

Once formed, the black holes evaporate at a rate given by 
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(3.4) 

which leads to a time dependence of the black hole mass of 

M&r(t) = M; - g.n&(t - Lw). (3.5) 

It is convenient to define a black hole lifetime, 

l- = Mo3/gJ&, 

and the expression for the mass as a function of time becomes M(t) = A&,[1 - (t - 

tna)/~]‘/s. The evaporation ends at time tBa = tm + 7. 

Black holes radiate as blackbodies with temperature Tea = m&/BaMsa. This 

allows us to calculate what is, for our purposes, the most important quantity-the 

number of particles emitted during the course of the evaporation. Let us first calculate 

the number of particles emitted while the black hole is between the temperatures T 

and T + dT. The change in mass of the black hole, dM, which is the amount of energy 

radiated as particles, is given by 

Each emitted particle has energy 3T (the mean energy of a particle in a Maxwell- 

Boltzmann distribution at temperature T), so the number of particles emitted be- 

tween those temperatures is just 

(3.8) 

Integrating this, we find that the number of particles emitted as the black hole tem- 

perature increases from its initial temperature To to m b 

4nM; 
N=-. 

34 
(3.9) 



Note that this gives the total number of particles emitted. A fraction f~ of these will 

be Higgs particles. To determine the appropriate form for fx, the initial temperature 

of the black hole at formation may be important. If it is less than the mass of the 

Higgs boson, mu, then the thermal spectrum in the initial phase of the evaporation 

will not include Higgs as the typical energy is not high enough to produce so mas- 

sive a particle. Only when the black hole temperature has increased to ma will the 

thermal radiation include a significant fraction of Higgs. This can lead to an overall 

suppression in the number of Higgs produced during the complete course of the evap- 

oration. Discussion of such a suppression will mostly be reserved for the conclusions. 

Once the temperature is high enough to radiate Higgs, we expect that the energy of 

radiated particles will be distributed evenly amongst all radiated species, so that fn 

is a constant given by gB/g, as discussed in Section II. 

Black hole evaporation affects the evolution of both components of the total mass 

density. Since the hole mass is decreased by evaporation, the evolution of the black 

hole energy density, which in the absence of evaporation would be that of nonrela- 

tivistic matter (PNR OL a-s, where a is the scale factor), is altered. The production 

of radiation from the hole evaporation also modifies the evolution of radiation energy 

density, which normally scales as a- ‘. Of course, the departure of the energy densi- 

ties from the normal evolution is most pronounced around the time t w tm + 7. An 

exact treatment of this effect is given in the appendix, where a network of equations 

is derived describing the evolution of the different components of the energy density 

and also the evolution of the baryon asymmetry. In order to understand the general 

results, let us for the moment ignore the complication resulting from the decrease of 

the hole mass. In Section IV we will discuss the inclusion of this effect. 

Two different situations arise, depending on whether black holes or radiation dom- 

inate the energy density of the Universe at the time the holes evaporate.ss If p < l/2, 
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then the evolution of the scale factor is that appropriate to a radiation-dominated Uni- 

verse? i.e., a(t) - t’l’, and the energy density of black holes goes as a-s OL t@/‘, while 

that of radiation goes as a+ oc t-s. Therefore, provided their lifetime is sufficiently 

long, black holes will come to dominate the Universe at a time t. = t&l - @)‘/P2, 

and hence if r > t. - tRa, they will come to dominate before their evaporation. If 

p > l/2, black holes dominate even initially. 

A. Evaporation before Domination 

We first examine the case where black hole evaporation occurs before domination. 

This corresponds to small p and initially light black holes, with 

7 < 1-M -- 
tRR P 

(3.10) 

Since the black holes never dominate, the Universe expands like a radiation-dominated 

Universe, with a oc tllZ. If the black holes evaporate before domination, their radia- 

tion will not significantly change the background entropy density. 

The number density of black holes will be diluted by the effects of expansion, 

scaling as a-s. Notice that this result is exact regardless of whether or not the holes 

are losing mass through evaporation, which leads to the energy density in holes falling 

ofI somewhat faster than this. At the time of evaporation, tBa, the number density 

of holes is 

a(hE) 3 nsa(tBa) = %u?(L?i¶) - ( 1 a(h) = nLla(tRE) ($y 
Eq. (3.9) gives us the number of Higgs particles produced during the evaporation of 

a single hole (we leave consideration of a suppression due to the black holes being 

initially too cool to radiate Higgs for the conclusions). Hence the number density of 

Higgs produced in the evaporation is 

na(tsa) = faN wz(tm) = h~“E$$ (2) 
311 

. 
P1 

(3.12) 
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Notice here that we have assumed all the particles are produced at the end of the 

evaporation; however, if the baryon number has the same scaling with time as the 

black hole energy density then this assumption gives exactly the correct result. 

With the assumption that each Higgs decay generates a net baryon number E as 

mentioned earlier (see I. for a definition of c), 

w(tsrr) = cfs- 
34 

The radiation density meanwhile has been dropping as l/P, so we have 

PR(bR) = PI&@-$ 

from which we obtain the radiation temperature at the evaporation time as 

T’(b) = 

The entropy density in the Universe at t = tBa is 

&ui) = gg.T’(taa) = $ g. (PR(tB#4 
Jl4 

, 

(3.14) 

(3.15) 

(3.16) 

which ultimately leads to a baryon asymmetry of 

BA = y = ;hr (g” (Z)“’ (&)“‘(, -pp)3,*, (3.17) 

where we have used Eq. (3.3). Note that the penultimate factor gives the initial black 

hole mass as a fraction of the horizon mass. 

In the appendix, we demonstrate how this result may be obtained from the eve- 

lution network of Eq. (A.13). The approximations of this subsection are equivalent 

to ignoring the last term in the 2’ equation and keeping RR = 1. Simple integration 

of the network equation for B leads directly to Eq. (3.17). 
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B. Evaporation after Domination 

We now consider the second possibility, that holes evaporate after they dominate 

the energy density. This divides into two further sub-cases; in the former, black holes 

come to dominate at time t. as defined earlier, while in the latter black holes dominate 

immediateiy after formation. 

In the first of these sub-cases, once t > t. the scale factor evolves as appropriate 

for a matter-dominated Universe, a(t) - t’/‘, and so psa(t) = psa(t.)(t./t)’ and 

PR(t) = pR(t,)(t./t)s/s, with the energy densities equal at t.. 

As before, the evaporation of a single black hole gives a baryon number 

no = CftrN ma(tm). (3.18) 

This time, though, the entropy is also determined by the other black hole evapora- 

tion products, as they provide the dominant contribution. Here we must make an 

additional assumption that alI the black hole energy density is transformed to radi- 

ation at the evaporation time. In reality, radiation will be produced throughout the 

evaporation, and because radiation dilutes more rapidly than black holes our approx- 

imation wilI tend to overestimate the entropy density and hence underestimate the 

baryon number. However, in the light of Eq. (3.4) we can see that most energy is 

transferred near the evaporation time and so this approximation should give fairly 

accurate results. Assuming that all the black hole density goes into entropy, we obtain 

2x1 .q = -gw 30 314 
45 l ( > 7 

P%hr), 

leading to a baryon asymmetry of 

n8 4K 45 iT= V’ -=-- 
d 3 279 

0 MO _ 
30 

‘fErTz7. --1/a 114 
mP1 

PBa(taa). 

(3.19) 

Substituting for PEE and t. leads to 
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This expression is very similar to that obtained in the “evaporation before domina- 

tion” scenario; in particular the black hole mass appears in the same functional form, 

and the prefactors are all the same with the exception of the p term, which naturally 

has changed as we move to a different physical situation. The last factor demonstrates 

how a long black hole lifetime dilutes the baryon asymmetry obtained; if r is very 

small this factor is just equal to one, while for r > tm we get a reduction in the 

baryon asymmetry by a factor of about {MV. Clearly, this factor can 

be important for long-lived (initially massive) black holes. These are also exactly the 

type of holes that one might expect to survive long enough to come to dominate even 

if 0 is originally substantially less than l/2. 

We note here that in the appendix we demonstrate that the result of Eq. (3.17) 

gives an absolute upper bound on the baryon asymmetry for a given p, and MO that 

may be obtained when we consider the full network evolution equations. (Of course, 

having chosen /3 and MO we have determined which physical situation we are in, so 

Eq. (3.17) may not be applicable; nevertheless it still gives the upper bound for those 

parameter values.) This is consistent with the last factor in the above expression 

always being less than one, and is easily understood by realising that producing the 

entropy later from the black holes means that up until evaporation the energy density 

representing what will become entropy has been falling off only as 03, whereas if it 

were in the background it would be falling as a ‘. Therefore, models where the black 

holes provide entropy lead to a greater entropy, and hence smallerbaryon number,. 

than models where the entropy is associated with the.background. We also remind 

the reader that we have had to make approximations to obtain Eqs. (3.17) and (3.21). 

Despite this, they match on the border where domination occurs (p = l/2) in the 
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case of very fast evaporation (7 L 0), which is precisely what one would expect of 

exact results. 

We now examine the second sub-case of black hole domination-that in which the 

black holes dominate even initially. The black hole energy density is now given by 

pBa(t) = pBf,(tRa)(tRB/t)*. Eq. (3.20) still holds, and now the substitution gives 

BBS = $f,, ($)I” ($)“’ (&)“‘~‘,‘(1 + -$. (3.22) 

whichis just Eq. (3.21) multiplied by (p/(1-p)) *I’. This factor represents the dilution 

of the black hole energy density up to domination. As expected, Eqs. (3.21) and 

(3.22) match in the case of marginal domination where p = l/2. The p dependence 

in Eq. (3.22) simply reflects the fraction of the horizon mass contributed by black 

holes. It differs from Eq. (3.21) b ecause here there is no evolution in the initial 

radiation-dominated phase, hence no era of dilution before domination. In the case 

of Eq. (3.21) an extra multiplier of [( 1-/3)/p] ‘1’ is needed to account for the evolution 

in the initial radiation-dominated phase. 

We also draw the reader’s attention to one slight subtlety relating to this final 

answer; for this final case we must patch a matter-dominated rather than radiation- 

dominated Friedmann universe onto the end of extended inflation. As discussed 

around Eq. (3.2), we must then use a slightly different formula to obtain tm from 

the energy density. The expression for the horizon mass is however the same. 

This completes the set of results for the different regions of domination, and is 

summarized in Table I. 

Note that to obtain the results of Table I. we have not yet assumed that an era 

of extended inflation has occurred; all we have assumed is that at some time tm a 

fraction p of the energy density is in black holes. Because we are assuming that this 

occurs after extended inflation, one further piece of information can be used-the 
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energy density at the end of inflation is known in terms of the inflaton parameters. 

(However, to get the reheat temperature we need to know p as well, as only the 

energy density in radiation contributes to TRY.) This gives us an expression for the 

horizon mass MH,,~ which can be substituted into the expressions we obtained above 

for the baryon asymmetry. Recalling that thermalization distributes the energy in 

the bubble walls throughout the volume of a bubble, we have (using the parameters 

of Section II and ignoring fJling factors) 

&RH) - ;Jg3 - 3(x0; ) 
c 

and hence &OR is given by 

(3.23) 

Although we included numerical factors in all the preceding discussion, the quantities 

derived from extended inflation are less well known and hence some of the expres- 

sions we shall use henceforth are approximate. Substitution of Eq. (3.24) into the 

various answers, Eq. (3.17), Eq. (3.21), and Eq. (3.22), gives us the baryon asymmetry 

obtained at the end of extended inflation for the differing physical situations. 
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IV. DISCUSSION, COMPARISONS AND CONCLUSIONS 

Here we examine typical numbers for the baryon asymmetry. For ease of comparison, 

we shall express the various results from the black hole mechanism as ratios of the 

result expressed in Eq. (2.4) for the baryon asymmetry & produced by the direct 

production mechanism.’ For a typical GUT theory & - 10-2c(~/A)‘/‘. For sample 

parameters this implies a small e, perhaps of order 10-s, in order to give the observed 

asymmetry B - IO-“. Note that here we assume that the fa are the same in all 

cases; i.e. we have not yet incorporated any suppression of Higgs production. 

To aid comparison, we define the quantity 8 

AE $fH 45” 
i ) 

1/a MO 
9. mP1 

‘/a@& (4.1) 

This combination appears in each of the formulae for the baryon asymmetry obtained 

in the previous section, excluding only the p factors and the dependence on the 

black hole lifetime (itself dependent on the initial mass). We introduce a parameter 

,u = Mo/Mao~. We expect p to be less than 1, though nothing prevents it from being 

much smaller. Using the formula for MHOR, Eq. (3.24), we have 

B N ~,fag;‘lrE-ll~~-1/‘~1211!. 
a 

We can now compare the differing black hole cases in turn, via the expression 

(4.2) 

First consider the case where black hole evaporation occurs before domination. 

This corresponds to p < l/2 and a short black hole lifetime. We obtain from 

Eq. (3.17) the simple expression 

BA 1 _N... 
BO 2 (1 -;)J,r~-L~2~~. 
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The “domination then evaporation” cases allow a similar comparison, e.g. 

BEI - _ $1 - pyyq! (1 + +-) -1/a 
Bo + (4.5) 

for the first sub-case and the same expression with (1 - p)‘I’ replaced by p*l’ for the 

second. 

To get a better feel for the meaning of p, we now examine when /.L is of such a 

value as to give holes of an interesting lifetime. As we know the horizon mass, we 

can determine both tRH and the evaporation time r for the black holes, the former 

being a function solely of the inflaton parameters, the latter being a function of /L 

Eqs. (3.3), (3.6) and (3.23) lead to the ratio 

T 
AN 
tivi 

&w (GnPlY 9. 
l 

For simplicity of discussion, we shall insert some plausible values for the various 

inflaton parameters; results for other values can be obtained by a suitable scaling. 

We choose 

g. = 100 ; ( = lo-’ ; x = 10-r ; 0s = 10-3mP~ . (4.7) 

These values give for Eq. (4.3) 

Although it seems from this that the black hole mechanism has the possibility of 

generating a much greater baryon asymmetry than the direct production mechanism’s 

Bo (by choice of a sufficiently large p), recall that~we must use the @ and p values .. 

appropriate to each regime. These will contribute to reduce the actual asymmetry ‘.a ~. 

obtained; for example, for BA we must choose p < 0.5, but then also we must choose 

p small enough so that the black holes do not come to dominate. 

Using the sample values from above, we obtain 
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7 
- 

tkzi 
- lo’*/.?, 

Hence only when black holes have masses such that fi > lo-’ are the lifetimes suf- 

ficiently long that the final factor in the expression for BE becomes important for 

those choices of parameters. 

We can also calculate the black hole lifetime required in order for black holes to 

dominate, which requires 7 > t. - tRa. We obtain 

r Pa ?- 
k- tRE = l-zp tRa’ (4 

(4.10) 

That this ratio must be greater than one gives a lower bound on T, and hence p, which 

must be satisfied in order for black holes to come to dominate. Equally, it gives an 

upper bound on p which must be obeyed for the “evaporation before domination” 

result BA to be applicable. 

These bounds on p for a given p allow us to calculate the maximum baryon 

asymmetry that can be obtained by each of the expressions within their range of 

validity; we do this for our sample parameters. The value of /A corresponding to the 

bound in the above expression is just 

p = lo-’ 
1 - 2p It3 ( ) p” . (4.11) 

In the “evaporation before domination” scenario, for a given p the maximum asym- 

metry is obtained when p saturates this bound. Hence the maximum asymmetry 

obtained from B* is at the value of p which maximizes 

2 1: (1 - 2p)93w( 1 - /q-w P E [O, VI. (4.12) 

The maximum value of the p factors is 0.652, obtained for p = (-11 + &%)/4 N 

0.342, which implies from all the above that at best BA - Bo. For small p we just 

get BA - p1/3Bor provided we choose p to optimize the asymmetry for a given p). If 
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p is smaller than the optimising value given above the asymmetry obtained becomes 

yet smaller. 

A similar comparison can be carried out for the “domination then evaporation” 

scenarios. Let us first consider the second case, where the black holes dominate 

immediately; here no bound on p arises, since the black holes no longer have to 

survive long enough to come to dominate. In this case p can, in principle, be as small 

or large (up to its maximum value of 1) as we like. Notice that there is a trade-off 

between the terms in the expressions for Bg. We can write BE D: ~(1 + ~$3)~i’s 

for some constant c. Asymptotically, Be D( ,u and BB o( ,u-‘lr for small and large p 

respectively. In fact, baryon number production is most efficient at an intermediate 

value of P E p. where T/~RH = 2 (true for any model parameters); for our sample 

parameters this once more corresponds to p of around 10m4 and hence we find, as 

in the previous case, that at best Be2 N Bo. Lighter or heavier holes will lead to a 

smaller asymmetry, particularly in the latter case as we shall shortly see there is an 

additional temperature suppression. The p factor plays little role here as it is simply 

pl/’ where /3 E [l/2,1]. 

Similar criteria also apply to the remaining case, where black holes come to dom- 

inate. Again the p factor is unimportant; the remaining terms are exactly n.s in the 

immediate domination case, and hence the upper limit on the baryon asymmetry is 

the same. However, we have to take one more thing into account, for in order for the 

BBI equation to apply p must exceed the lower limit from Eq. (4.10). Ifp. is greater 

than that bound, then the analysis is just as before. However, if the bound is larger 

than p. then the maximum asymmetry that may be obtained will occur when this 

bound is just met, and will be smaller than that obtained if p = ,u. were allowed. 

Again temperature suppression may also be important, as we now discuss. 

The initial temperature of the black hole depends on the value of p, with more 
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massive holes being cooler. As stated earlier, if this temperature is below the mass of 

the Higgs then the initial phase of evaporation will not feature Higgs particles. The 

black hole temperature is given by 

T 4, 
BE = &?Ms~ 

which leads to a ratio 

% N (~pl’ (-2) p-l. 
ma 

(4.14) 

where we have written the Higgs mass as mg = X Fcro (guided by GUT theories). 

Thi ’ s gwes a critical value, p,~,, which p must be less than in order for Higgs radiation 

to occur. Using the sample parameters of Eq. (4.7) and assuming AH N X we get 

TBR -Y lo-‘p-1 
ma 

Hence only when p < IO-’ is the black hole hot enough to be radiating Higgs particles 

immediately. For larger p, one can expect an initial evaporation phase (during which 

no Higgs are radiated) until /.L reaches pait. Eq. (3.9) tells us that N oc Mt cx T;‘. 

Hence if p is greater than the critical value which allows the radiation of Higgs, 

then there will be a suppression of the baryon number formed by a factor (p&p)‘. 

Such a suppression will occur in all versions of the black hole scenario, including the 

“evaporation before domination” result. The number IO-’ given above is of course 

dependent on the particular choice of parameters; the general form of the suppression 

factor can also be written as [M(T = m~)/M,,]“. It is coincidental that for our choice 

of parameters pki, is approximately the value of p required to make r N tm. 

The two different scenarios we have described also lead to qualitatively.different - 

non-uniformities in the density distribution of the Universe. In the case of adomina- 

tion then evaporation” the initial inhomogeneities in the black hole number distribu- 

tion will lead to both non-uniformity in the photon and baryon number distribution 
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following black hole evaporation because both are determined by the black hole evap- 

oration products. The resulting density perturbations will therefore be of a quasi- 

adiabatic nature. In the second case of “evaporation before domination” evaporation 

products determine only the baryon number irregularity and hence if the radiation 

distribution were initially smooth, the resulting density perturbations would be of a 

quasi-isothermal character. 

One other feature of this model worth mentioning is that a fraction of the rest 

mass of the black holes will evaporate as grsvitons. For black holes in the range 

10” to 1O’sg one finds that about 2% of this rest mass is emitted ss gravitons.st In 

versions of the model where the black holes have dominated the energy density we 

would therefore create an initial graviton abundance of perhaps between 0.01 and 0.1 

of that residing in photons. Both gravitons and photons scale as a-’ as the universe . 

expands, leaving the ratio effectively constant; however, the gravitons will remain 

collisionless after they form and hence their abundance will not be exactly thermal 

(rather, it will be a superposition of different Planck spectra with T N Tsa with a 

Bose-Einstein form). Because gravitons are collisionless their temperature will not 

keep pace with that of the thermal sea of interacting particles, such as photons, into 

which massive particle-antiparticle pairs will annihilate. Assuming the evolution is 

entropy conserving then p=J”s will stay constant through annihilation thresholds, 

where pm, is the number of degrees of freedom interacting with the photons. This will 

give the photon an enhanced temperature over the gravitons by a factor (gti/2)*/3 

where the 2 represents the photon degrees of keedom. Hence the fraction of the 

energy density in gravitons relative to photons-will be down by a further factor of. ~~~~ 

(9=$/2)@ over and above that at formation. The characteristic wavelength of such 

gravitons at formation is expected to be the Schwarzschild radius of the hole, so that 

A. - 2Mzn/m$r; they wiil then be redshifted by theexpansion to a wavelength today 
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of A3 = A.( 1 + z,,*). 

To conclude then, we list the typical outcomes of the mechanisms we have dis- 

cussed, in comparison to the direct production model. At best these models can 

generate an asymmetry of the same order of magnitude as the direct production 

mechanism. However, one must remember that for a range of inflaton parameters 

the direct production mechanism will not work;’ for example the wall collisions may 

not be sufficiently energetic to produce Higgs particles directly. In such cases the 

black hole mechanisms we have outlined may be the only way in which to generate 

an asymmetry, especially in cases where the reheat temperature is substantially less 

than the Higgs rest mass. We illustrate the outcomes for the specific choice of in&ton 

parameters given in Eq. (4.7), though our methods as illustrated in this section can 

be applied to any choice of parameters with ease. 

The simplest version is “evaporation before domination,” with p < I/2. The holes 

must have a mass such that the ratio given by Eq. (4.10) is less than one. Such holes 

are probably light (and hence hot) enough for there to be no suppression of radiated 

Higgs, and hence the asymmetry formed is very similar to that of direct production. 

The asymmetry is substantially less, though, in cases where ,8 or ,U are very small. 

In the first of the “domination then evaporation” scenarios, p < l/2 but now the 

holes are massive enough to last until domination, with p greater than about lo-‘. 

Here there is the possibility that the holes initially cannot radiate Higgs particles and 

there may be some suppression of baryon asymmetry because of this. Thus the baryon 

asymmetry is likely to be a few orders of magnitude less than direct production, and 

hence if the model parameters allow direct production, this mechanism operating on 

the remaining 1 - p of the energy density will be the dominant contributor. Finally, 

there is the version where black holes dominate even initially. If the black holes 

have p greater than about lo-’ the picture will be very similar to that of the first 
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“domination then evaporation” scenario. However, here the black holes can be much 

lighter, allowing them to radiate Higgs immediately. If their initial mass is around 

~1 N lo-’ a baryon asymmetry of similar magnitude to that of the direct production 

mechanism may be obtained. Note though that the case of long-lasting holes leads 

to a small asymmetry in either of the “domination then evaporation” cases. Finally, 

throughout this paragraph a reduction in the baryon asymmetry in one model as 

compared to another can be interpreted as simply requiring a larger E. 

For different model parameters the details may be somewhat different when the 

constraints of lifetime and temperature have been taken into account; in general for 

instance the critical values of or governing the temperature and Lifetime behaviour 

need not be as close as in the case we have illustrated. However, the principles of 

estimating the asymmetry remain exactly the same as discussed in the preceding 

paragraph. This concludes our investigation of bzuyogenesis after extended inflation, 

in which we have outlined methods of estimating the baryon asymmetry formed in 

wall collisions for a variety of different mechanisms. Each of the models we have 

outlined appears to have prospects for generating a baryon asymmetry of the correct 

order of magnitude to match observations, depending of course on the degree of 

baryon number violation in the particle theory under consideration. We have found 

here that in cases where direct production of Higgs particles in the wall collisions may 

occur, the asymmetry generated is generically greater than that via the black hole 

mechanism, so if direct production is allowed this will be the dominant contributor 

to the asymmetry. However, it is possible that the infiaton parameters may not allow 

direct production, in which case if there is a substantial production of black holes 

they may provide a route to a baryon asymmetry of the appropriate magnitude. For 

a discussion of further relevant points such as the role of sphalerons and on methods 

of avoiding monopole production, we refer the reader to the final Section of I. 
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APPENDIX A. DYNAMICAL EVOLUTION OF BARYON NUMBER 

This appendix includes a derivation of the rate equations which determine the evo- 

lution of the baryon number during the black hole evaporation. An examination of 

the limiting cases of these network equations allows us to regain the results outlined 

in Section III. To cast the equations in their simplest form several new notations will 

be introduced. 

At tm we start with energy densities ~na(tm) = @p(tm) in black holes and 

pR(tRa) = (1 - P)p(tm) in radiation. We denote the initial black hole mass as Me. 

As discussed in Section III, the black hole mass as a function oft is 

@i,(t) = M,” 11 - (t - hiT)l~l , (A.11 

where, as before, r = M,5/(g.m$,) is the black hole lifetime. Now the black hole 

energy density is PEE(t) = nBa(t)M&t). S ince the number density of black holes 

scales as am3 and the mass as a function of time is given in Eq. (kl), the black hole 

energy density is 

ma(t) = lo&ur)l11 - (t - hr)l~11’3 [+3.rr)l~(t)13~ (A.21 
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Of course, the factor Pp(ta~) is simply the black hole energy density at tax. One can 

check that if the black holes are given a thermal velocity then they still contribute 

a negligible pressure. This confirms that the black hole number density scales as 

matter, justifying the form used above. We have here neglected accretion onto the 

black holes from the background; in principle this may be an important effect at early 

times before the expansion dilutes the radiation. The amount of accretion presumably 

will be proportional to the square of the Schwarzschild radius of the holes, multiplied 

by some capture cross-section of order one and by the density of the background. 

Rough calculations indicate that accretion would be negligible at late times. 

For convenience we introduce a set of dimensionless variables 

= = a(t)/‘+RH) 

2 s (t-tm)/r 

hi = PEa~3/LPP(hIi)l 

RR = ~~a’/[0 - P)~(hr)l. (A.31 

Note that during evaporation the new time variable z simply goes from 0 to 1. The 

purpose behind the new variables should be obvious. Until evaporation starts in 

earnest, the evolution of the energy densities is simple: pi OL a-’ and pan a a-‘. By 

defining Rx and RB~ we isolate the deviation from these simple scalings: RBR and 

RR have been defined so as to be constant in the absence of black hole evaporation. 

The evolution of the black hole energy density now has the simple form 

RBa = (1 - .)I’? (A.41 

The energy density of radiation is diluted by the expansion, but is increased by 

energy fed in from the black hole evaporation according to 

bR = -4 !T 0 MBE 
o Pla- -psa I 

MEJi 
(A.51 
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which after some manipulation gives the evolution equation for radiation as (where 

primes denote derivatives with respect to z) 

p (RR)’ = Q3(1 -p) (1 - zp3. 

To complete this set, we need the equation for a, which is just the Friedmann 

equation 

= $ [PR + PER], 

which after some manipulation leads to 

(a’)’ = F MO” (1 - P)P(bwJ 
3 !734: aa 

RR+Q &(l - .pj . 

Having the equations governing the evaporation of the black hole, we must now 

calculate the baryon number produced during the evaporation. Baryon number is 

generated by the decay of Higgs particles produced during the evaporation, with a 

baryon asymmetry of s produced per Higgs. We shall assume that the only source 

of Higgs is in primary production from the hole evaporation, and neglect any Higgs 

later produced as the emitted particles thermalize. Further, when the hole is at a 

temperature T we assume that the mean energy of particles produced is just (E) = 

3T = 3m$,/BxMna. The fraction of Higgs particles produced will depend on this 

temperature, as at low energies there is insufficient energy to create a Higgs. A typical 

form for this thermal suppression may be #a = (ga/g.)exp(--TnE/TBa), where ga 

is the number of Higgs degrees of keedom. This just says that at high temperatures 

Higgs production matches that of other species, with Boltzmsnn suppression at low 

temperatures. 

We note here that in section III we demonstrated that the number of particles 

produced in the course of evaporation from a temperature T is proportional to T*. 

Hence if we consider the particles emitted from when the temperature matches the 

,. . 
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Higgs mass, we find that 314 of them will have energies between rn~ and 2ma. This 

reinforces the impression that secondary production will not be important as most 

particles produced with energies above ma have energies not far above the Higgs mass 

and hence their thermalization is unlikely to prompt much secondary production. 

The rate of particle production per hole is 

I;r=-AL=- 8*g. rn& 
3Tsa 9 K’ (A-9) 

from which we obtain the rate of Higgs production, and then the baryon number 

production, as 

(A.10) 

Converting from number per hole to number density and letting the baryon number 

density evolve in an expanding Universe leads to the expression 

nb = cf~$Pp(t~)a-%np~d&(1 - I)-~/’ - 3$s. (A-11) 

For convenience we define the quantity i = rr~/pr which is related to the baryon 

number B via B = (3/4)(30/n”g.)‘1’B. R ewriting the evolution of baryon number 

in terms of Z leads to 

p”‘(t&np;Mo( 1 - 2) -1/3&3/4 ;(z)‘& 
R 

(A.12) 

Equations (A.4), (A.6), (A.8), and (A.12) f arm a dosed set of equations to in- 

tegrate to give the baryon number. The input parameters are MO, /3, and p(t~). 

Rather than input p(t~), it is more physical to input the horizon msas at TV from 

Eq. (3.3). The set of equations becomes 

a’ = (2)’ (2) (l i$” bR + $(I _ z)V3]“’ 

Rk = 3(1-P) 
=p (1 - +2/3 
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8’ zz ~(~)“z(~)*‘3~l~~~,,, (!$!)3”(1-z)-1/3R;3/4 

3 (RR)'~ 
-4Tg- . 

(A.13) 

The equations are to be integrated from z = 0 to z = 1, with initial conditions 

n(O) = RR(O) = 1, and i(O) = 0. 

Assuming fa to be constant (approximately true for hot holes,Tna > ma) this 

equation has an immediate first integral via 

( j.R$‘)’ = C( 1 - z)-r’s, (A.14) 

where C is a constant as seen from the preceding equation. This leads to 

B(z) = 2R;;(r) [I - (1 -d (A.15) 

The baryon number at the end of evaporation is obtained simply by substituting 

z = 1 into the equation to get 8 = 3C/2Rf/'(z = 1) and using the equation for B 

given above. Note that RR can only increase from its initial value of 1, so putting 

in RR = 1 gives an upper limit on the baryon number obtainable for a given set 

of parameters. Notice further that this limit coincides with Eq. (3.17) obtained in 

section III for the case of “evaporation before domination.” 

We have been unable to reproduce analytically the results for either of the “dom- 

ination then evaporation” cases from the network equations, a task made complex 

because at the end of the evaporation we go back into a radiation-dominated region 

from the era of black hole domination. Hence we cannot consistently neglect either of 

the terms in the equation for Q for the entire evolution, though perhaps good answers 

can be obtained by assuming that the majority of the baryon asymmetry is produced 

during the era of black hole domination. A further problem may be that fa can no 

longer be regarded as a constant if there is the possibility that the holes are initially 
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too cool to radiate Higgs. Numerical evolution of the network is another method of 

obtaining results for this case, though this is hampered by the large number of free 

parameters to be chosen (e.g. t, MO, p etc.). 

References 

1. J. D. Barrow, E. J. Copeland, E. W. Kolb, and A. R. LiddIe, “Baryogenesis in 

Extended Inflation. I. Baryogenesis via Production and Decay of Supermassive 

Bosons,” University of Sussex and Fermilab preprint 1990, unpublished. 

2. D. La and P. J. Steinhardt, Phys. Rev. Left. 62, 376 (1989). 

3. A. H. Guth, Phys. Reu. D 23, 347 (1981). 

4. C. CaUan and S. Coleman, Phys. Rev. D 16, 1762 (1977). 

5. A. H. Guth and E. J. Weinberg, Nucl. Phys. 8212,321 (1983). 

6. L. F. Abbott and M. B. Wise, Nucl. Phys. B244 541 (1984); J. D. Barrow, 

Phys. Lett. B187, 12 (1987); F. Lucchin and S. Matarrese, Phys. Rev. D 32, 

1316 (1985); J. D. Barrow and P. Coles, Mon. Not. Roy. astrcm. Sot. 244, 188 

(1990); J. D. Barrow, Phys. Left. B2S5,40 (1990). 

7. E. J. Weinberg, Phys. Rev. D 40, 3950 (1989). 

8. D. La, P. J. Steinhardt, and E. W. Bertschinger, Phya. Left. 231B, 231 (1989). 

9. P. J. Steinhardt and F. S. Accetta, Phys. Reu. Leff. 64,274O (1990). 

10. F. S. Accetta and J. J. Treater, Phys. Rev. D SB, 2854 (1989). 

11. R. HoIman, E. W. Kolb, S. L. Vadas, and Y. Wang, “KaIuza-Klein Extended 

Inflation,” Fermilab preprint 1990, unpublished. 

29 



12. R. Holman, E. W. Kolb, and Y. Wang, Whys. Rev. Lett. 65, 17 (1990); J. D. 

Barrow and K. Maeda, ~Vucl. Phys. (In Press). 

13. See, e.g., K. A. Olive, “Big Bang Nucleosynthesis: Theory and Observations,” 

Univ. Minnesota preprint (1990); B. E. J. Pagel, in Evolutionary Phenomena in 

Gala&es, eds. .I. E. Beckman and B. E. J. Page1 (Cambridge University Press, 

Cambridge, 1989). 

14. For a review of baryogenesis, see E. W. Kolb and M. S. Turner, The Early 

C&verse (Addison Wesley, Redwood City, Ca., 1990). 

15. See B. J. Carr, Astrophys. J. 208, 8 (1976). 

16. J. D. Barrow and F.J. Tipler, Nature 276, 453 (1978); D. Toussaint, S. B. 

Treiman, F. Wilczek, and A. Zee, Phys. Rev. D 19, 1036 (1979); M. S. Turner, 

Phys. Lett. 8QB, 155 (1979) 

17. S.W. Hawking, I.G. Moss and J.M. Stewart, Phys. Rev. D 26, 2681 (1982). 

18. H. Kodama, M. Sasaki, and K. Sate, Prog. Theor. Phys. 68, 1979 (1982), and 

references therein. 

19. S. Hsu, “Black Holes from Extended Inflation,” Lawrence Berkeley Laboratory 

preprint, unpublished. 

20. J. D. Barrow, Mon. Not. R. Aatm. Sm. 192, 427 (1980); J. D. Barrow and G. 

G. Ross, Nwl. Phys. B181, 461 (1981); .I. D. Barrow, Fund. Cosmic. Phya. 8, 

83 (1983). 

21. D. N. Page, Phys. Rev. D 14, 3260 (1976) and D. N. Page, Phys. Rev. D 16, 

2402 (1977). 

30 



Table I. Results for the baryon number produced by black hole evaporation de- 

pend upon p (the fraction of the energy of the Universe in black holes at t = tm, 

where tna is taken to be the end of inflation), t. (the time at which the black holes 

dominate the mass of the Universe), and r = M&/g.n& (the lifetime of a black 

hole of mass MB*). 

p <pl,2 
T B E Q/S 

T < t. - tRB Eq. (3.17) 

P < w r>t.--tm Eq. (3.21) 
fl > l/2 independent of r Eq. (3.22) 
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